Comparison of temporal fluctuations in the total electron content estimates from EISCAT and GPS along the same line of sight
نویسندگان
چکیده
The impact of space weather events on satellitebased technologies (e.g. satellite navigation and precise positioning) is typically quantified on the basis of the total electron content (TEC) and temporal fluctuations associated with it. GNSS (global navigation satellite systems) TEC measurements are integrated over a long distance and thus may include contributions from different regions of the ionised atmosphere which may prevent the resolution of the mechanisms ultimately responsible for given observations. The purpose of the experiment presented here was to compare TEC estimates from EISCAT and GPS measurements. The EISCAT measurements were obtained along the same line of sight of a given GPS satellite observed from Tromsø. The present analyses focussed on the comparison of temporal fluctuations in the TEC between aligned GPS and EISCAT measurements. A reasonably good agreement was found between temporal fluctuations in TEC observed by EISCAT and those observed by a co-located GPS ionospheric monitor along the same line of sight, indicating a contribution from structures at E and F altitudes mainly to the total TEC in the presence of ionisation enhancements possibly caused by particle precipitation in the nighttime sector. The experiment suggests the great potential in the measurements to be performed by the future EISCAT 3D system, limited only in the localised geographic region to be covered.
منابع مشابه
Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps
Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...
متن کاملIdentification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight
Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation system...
متن کاملThe regional estimates of the GPS satellite and receiver differential code biases
The Differential Code Biases (DCB), which are also termed hardware delay biases, are the frequency-dependent time delays of the satellite and receiver. Possible sources of these delays are antennas and cables, as well as different filters used in receivers and satellites. These instrumental delays affect both code and carrier measurements. These biases for satellites and some IGS stations tend ...
متن کاملComparison of EISCAT and ionosonde electron densities: application to a ground-based ionospheric segment of a space weather programme
Space weather applications require real-time data and wide area observations from both groundand spacebased instrumentation. From space, the global navigation satellite system – GPS – is an important tool. From the ground the incoherent scatter (IS) radar technique permits a direct measurement up to the topside region, while ionosondes give good measurements of the lower part of the ionosphere....
متن کاملTomographic Reconstruction of the Ionospheric Electron Density in term of Wavelets
Ionospheric tomography is a method to investigate the ionospheric electron density in two or three dimensions. In this study, the function-based tomographic technique has been used for regional reconstruction of a 3D tomographic model of the ionospheric electron density using the GPS measurements of the Iranian Permanent GPS Network. Two-dimensional Haar wavelets and empirical orthogonal functi...
متن کامل